601 research outputs found

    Fluorescence spectroscopy of normal and follicular cancer samples from human thyroid

    Get PDF
    An autofluorescence analysis has been performed on healthy as well as tumour thyroid tissue samples to distinguish follicular cancer from normal thyroid. Complete spectra and synchronous spectra have been recordered from properly stored samples. Fluorescence bands located at 350 nm and 400 nm has been observed in the analysed cancer samples

    A Versatile Model of Microfluidic Perifusion System for the Evaluation of C-Peptide Secretion Profiles: Comparison Between Human Pancreatic Islets and HLSC-Derived Islet-Like Structures

    Get PDF
    A robust and easy-to-use tool for the ex vivo dynamic evaluation of pancreatic islet (PI) function is essential for further development of novel cell-based therapeutic approaches to treating diabetes. Here, we developed four different glucose perifusion protocols (GPPs) in a microfluidic perifusion system (MPS), based entirely on commercially available components. After validation, the GPPs were used to evaluate C-peptide secretion profiles of PIs derived from different donors (healthy, obese, and type 2 diabetic) and from human liver stem-cell-derived islet-like structures (HLSC-ILS). Using this device, we demonstrated that PIs derived from healthy donors displayed a physiological C-peptide secretion profile as characterized by the response to (a) different glucose concentrations, (b) consecutive pulses of high-glucose concentrations, (c) a glucose threshold ranging from 5–8 mM, and (d) a constant high-glucose perifusion in a biphasic manner. Moreover, we were able to detect a dysregulated secretion profile in PIs derived from both obese and type 2 diabetes mellitus (T2DM) donors. Finally, we also evaluated the kinetic secretion profiles of HLSC-ILS, demonstrating that, nonetheless, with a lower amplitude of secretion compared to PI derived from healthy donors, they were already glucose-responsive on day seven post-differentiation. In conclusion, we have provided evidence that our MPS is a versatile device and may represent a valuable tool to study insulin-producing cells in vitro

    CONVERGENCE OF SIGNALING BY INTERLEUKIN-3, GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR, AND MAST CELL GROWTH FACTOR ON JAK2 TYROSINE KINASE

    Get PDF
    Mast cell growth factor (MGF) (also called stem cell factor) synergizes with several lymphokines, including interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF), to promote proliferation and differentiation of certain hemopoietic progenitor cells. Although similar patterns of tyrosine-phosphorylated proteins characterize cells stimulated by MGF, IL-3, and GM-CSF, only the MGF receptor is a tyrosine kinase, and the heterodimeric receptors for IL-3 and GM-CSF share a common beta subunit that is devoid of enzymatic activity. Here we show that signaling pathways utilized by all three cytokines include the cytoplasmic tyrosine kinase JAK2. Analysis of several factor-dependent myeloid cell lines indicated that JAK2 is physically associated with the common beta subunit and with MGF receptor (c-Kit) even prior to ligand binding. However, each of the ligands induced elevated tyrosine phosphorylation of JAK2 and a consequent increase in its catalytic activity. These results demonstrate for the first time the convergence within the same myeloid cells of signaling pathways originating in two distinct lymphokine receptors and a tyrosine kinase receptor on activation of a cytoplasmic tyrosine kinase

    Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy.

    Get PDF
    Abstract Extracellular vesicles (EVs) that are derived from mesenchymal stromal cells (MSCs) have been shown to reprogram injured cells by activating regenerative processes. We herein investigate the potential therapeutic effect of EVs, shed by human bone marrow MSCs and by human liver stem-like cells (HLSCs), on the progression and reversion of fibrosis in a mouse model of diabetic nephropathy, as induced by streptozotocin. After the development of nephropathy, stem cell-derived EVs were administered weekly to diabetic mice for four weeks. The stem cell-derived EV treatment, but not the fibroblast EV treatment that was used as a control, significantly ameliorated functional parameters, such as albumin/creatinine excretion, plasma creatinine and blood urea nitrogen, which are altered in diabetic mice. Moreover, the renal fibrosis that develops during diabetic nephropathy progression was significantly inhibited in stem cell EV-treated animals. A correlation was found between the down regulation of several pro-fibrotic genes in renal tissues and the anti-fibrotic effect of HLSC and MSC EVs. A comparative analysis of HLSC and MSC EV miRNA content highlighted some common and some specific patterns of miRNAs that target predicted pro-fibrotic genes. In conclusion, stem cell-derived EVs inhibit fibrosis and prevent its progression in a model of diabetes-induced chronic kidney injury

    Granulocyte-macrophage colony-stimulating factor stimulates JAK2 signaling pathway and rapidly activates p93fes, STAT1 p91, and STAT3 p92 in polymorphonuclear leukocytes.

    Get PDF
    Granulocyte-macrophage colony-stimulating factor (GM-CSF), supports proliferation, differentiation, and functional activation of hemopoietic cells by its interaction with a heterodimeric receptor. Although GM-CSF receptor is devoid of tyrosine kinase enzymatic activity, GM-CSF-induced peripheral blood polymorphonuclear leukocytes (PMN) functional activation is mediated by the phosphorylation of a large number of intracellular signaling molecules. We have previously shown that JAK2 becomes tyrosine-phosphorylated in response to GM-CSF in PMN. In the present study we demonstrate that also the signal transducers and activators of transcription (STAT) family members STAT1 p91 and STAT3 p92 and the product of the c-fps/fes protooncogene become tyrosine-phosphorylated upon GM-CSF stimulation and physically associated with both GM-CSF receptor beta common subunit and JAK2. Moreover GM-CSF was able to induce JAK2 and p93fes catalytic activity. We also demonstrate that the association of the GM-CSF receptor beta common subunit with JAK2 is ligand-dependent. Finally we demonstrate that GM-CSF induces a DNA-binding complex that contains both p91 and p92. These results identify a new signal transduction pathway activated by GM-CSF and provide a mechanism for rapid activation of gene expression in GM-CSF-stimulated PMN

    Sustained virologic response to direct-acting antiviral agents predicts better outcomes in hepatitis C virus-infected patients: A retrospective study

    Get PDF
    Direct-acting antiviral agents (DAAs) are extremely effective in eradicating hepatitis C virus (HCV) in chronically infected patients. However, the protective role of the sustained virologic response (SVR) achieved by second- and third-generation DAAs against the onset of hepatocellular carcinoma (HCC) and mortality is less well established
    corecore